経歴

英文論文(総説)
2022
Takada S (first author and corresponding author), Sabe H, Kinugawa S.
Treatments for skeletal muscle abnormalities in heart failure: sodium-glucose transporter 2 and ketone bodies.
Am J Physiol Heart Circ Physiol 1;322(2):H117-H128, 2022.
https://journals.physiology.org/doi/abs/10.1152/ajpheart.00100.2021


2020
Takada S (first author and corresponding author), Sabe H, Kinugawa S.
Abnormalities of skeletal muscle, adipocyte tissue, and lipid metabolism in heart failure: practical therapeutic targets.
Front Cardiovasc Med12;7:79, 2020.
doi: 10.3389/fcvm.2020.00079


2015
Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H.
Skeletal Muscle Abnormalities in Heart Failure.
Int Heart J 56:475-484, 2015.
https://www.jstage.jst.go.jp/article/ihj/56/5/56_15-108/_article


2013
1. Okita K, Takada S.
Application of Blood Flow Restriction in Resistance Exercise Assessed by Intramuscular Metabolic Stress.
J Nov Physiother 3:6, 2013.

2. Morita N, Takada S, Okita K.
Influence of stretch and pressure as mechanical stresses on skeletal muscle.
Jpn J Phys Fitness Sports Med 62: 347-350, 2013.
https://www.jstage.jst.go.jp/article/jpfsm/2/3/2_347/_article
英文論文(原著)
2021
1. Suga T, Dora K, Tomoo K, Mok E, Sugimoto T, Takada S, Hashimoto T, Isaka T.
Exercise adherence-related perceptual responses to low-load blood flow restriction resistance exercise in young adults: A pilot study.
Physiol Rep 9(23):e15122, 2021.
https://physoc.onlinelibrary.wiley.com/doi/10.14814/phy2.15122

2. Tomoo K, Suga T, Dora K, Sugimoto T, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Impact of inter-set short rest interval length on inhibitory control improvements following low-intensity resistance exercise in healthy young males.
Front Physiol 22;12:741966, 2021.
https://www.frontiersin.org/articles/10.3389/fphys.2021.741966/full

3. Dora K, Suga T, Tomoo K, Sugimoto T, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Similar improvements in cognitive inhibitory control following low-intensity resistance exercise with slow movement and tonic force generation and high-intensity resistance exercise in healthy young adults: A preliminary study.
J Physiol Sci17;71(1):22, 2021.
https://jps.biomedcentral.com/articles/10.1186/s12576-021-00806-0

4. Kakutani N, Takada S (corresponding author), Nambu H, Maekawa S, Hagiwara H, Yamanashi K, Obata Y, Nakano I, Fumoto Y, Hata S, Furihata T, Yokota T, Fukushima A, Kinugawa S.
Angiotensin-converting enzyme inhibitor prevents skeletal muscle fibrosis in diabetic mice.
Exp Physiol 106(8):1785-1793, 2021.
https://physoc.onlinelibrary.wiley.com/doi/10.1113/EP089375

5. Furihata T*, Maekawa S*, Takada S, Kakutani N, Nambu H, Shirakawa R, Yokota T, Kinugawa S.
Premedication with pioglitazone prevents doxorubicin-induced left ventricular dysfunction in mice.
BMC Pharmacol Toxicol7;22(1):27, 2021.
https://bmcpharmacoltoxicol.biomedcentral.com/articles/10.1186/s40360-021-00495-w

6. Obata Y, Kakutani N, Kinugawa S, Fukushima A, Yokota T, Takada S, Ono T, Sota T, Kinugasa Y, Takahashi M, Matsuo H, Matsukawa R, Yoshida I, Yokota I, Yamamoto K, Tsuchihashi-Makaya M.
Impact of Inadequate Calorie Intake on Mortality and Hospitalization in Stable Patients with Chronic Heart Failure.
Nutrients 13:874, 2021.
https://www.mdpi.com/2072-6643/13/3/874

7. Yokota T, Kinugawa S, Hirabayashi K, Yamato M, Takada S, Suga T, Nakano I, Fukushima A, Matsushima S, Okita K, Tsutsui H. Systemic oxidative stress is associated with lower aerobic capacity and impaired skeletal muscle energy metabolism in heart failure patients.
Sci Rep 11:2272, 2021.
https://www.nature.com/articles/s41598-021-81736-0

8. Furihata T, Takada S, Kakutani N, Maekawa S, Tsuda M, Matsumoto J, Mizushima W, Fukushima A, Yokota T, Enzan N, Matsushima S, Handa H, Fumoto Y, Nio-Kobayashi J, Iwanaga T, Tanaka S, Tsutsui H, Sabe H, Kinugawa S.
Naturally occurring mitoNEET downregulation in aged hearts is a potential cause of age-associated heart failure.
Commun Biol 4:138, 2021.
https://www.nature.com/articles/s42003-021-01675-4

9. Nambu H, Takada S (corresponding author), Maekawa S, Matsumoto J, Kakutani N, Furihata T, Shirakawa R, Katayama T, Nakajima T, Yamanashi K, Obata Y, Nakano I, Tsuda M, Saito A, Fukushima A, Yokota T, Nio-Kobayashi J, Yasui H, Higashikawa K, Kuge Y, Anzai T, Sabe H, Kinugawa S.
Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance.
Cardiovasc Res 22;117(3):805-819, 2021.
https://academic.oup.com/cardiovascres/article-abstract/117/3/805/5836830?redirectedFrom=fulltext

10. Dora K, Suga T, Tomoo K, Sugimoto T, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Effect of very low-intensity resistance exercise with slow movement and tonic force generation on post-exercise inhibitory control.
Heliyon 18;7(2):e06261, 2021
https://www.sciencedirect.com/science/article/pii/S2405844021003662

11. Sugimoto T, Suga T, Tomoo K, Dora K, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Blood flow restriction improves executive function following walking.
Med Sci Sports Exerc 53(1):131-138, 2021.
https://journals.lww.com/acsm-msse/Fulltext/2021/01000/Blood_Flow_Restriction_Improves_Executive_Function.16.aspx

12. Matsumoto J*, Takada S*, Furihata T, Nambu H, Kakutani N, Maekawa S, Mizushima W, Nakano I, Fukushima A, Yokota T, Tanaka S, Handa H, Sabe H, Kinugawa S.
Brain-Derived Neurotrophic Factor Improves Impaired Fatty Acid Oxidation Via the Activation of Adenosine Monophosphate-activated Protein Kinase-α - Proliferator-Activated Receptor-r Coactivator-1α Signaling in Skeletal Muscle of Mice With Heart Failure.
Circulation Heart Fail2021;13:e005890. * contributed equally to this work.
https://www.ahajournals.org/doi/10.1161/CIRCHEARTFAILURE.119.005890


2020
1. Abe T, Yokota T, Fukushima A, Kakutani N, Katayama T, Shirakawa R, Maekawa S, Nambu H, Obata Y, Yamanashi K, Nakano I, Takada S, Yokota I, Okita K, Kinugawa S, Anzai T.
Type 2 diabetes is an independent predictor of lowered peak aerobic capacity in heart failure patients with non-reduced or reduced left ventricular ejection fraction. Cardiovasc Diabetol 19;19(1):142, 2020.
https://cardiab.biomedcentral.com/articles/10.1186/s12933-020-01114-4

2. Nakano I*, Hori H*, Fukushima A, Yokota T, Kinugawa S, Takada S, Yamanashi K, Obata Y, Kitaura Y, Kakutani N, Abe T, Anzai T.
Enhanced Echo Intensity of Skeletal Muscle Is Associated with Exercise Intolerance in Patients with Heart Failure.
J Card Fail 26(8):685-693, 2020.
https://www.onlinejcf.com/article/S1071-9164(19)30416-6/fulltext

3. Mok E, Suga T, Sugimoto T, Tomoo K, Dora K, Takada S, Hashimoto T, Isaka T.
Negative effects of blood flow restriction on perceptual responses to walking in healthy young adults: a pilot study.
Heliyon 6:e04745, 2020.
doi: 10.1016/j.heliyon.2020.e04745

4. Tomoo K, Suga T, Sugimoto T, Tanaka D, Shimoho K, Dora K, Mok E, Matsumoto S, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Work volume is an important variable in determining the degree of inhibitory control improvements following resistance exercise.
Physiol Rep 8(15):e14527, 2020.
https://physoc.onlinelibrary.wiley.com/doi/full/10.14814/phy2.14527

5. Kawamura E, Maruyama M, Abe J, Sudo A, Takeda A, Takada S, Yokota T, Kinugawa S, Harashima H. Yamada Y.
Validation of gene therapy for mutant mitochondria by delivering mitochondrial RNA using a MITO-Porter, a liposome-based nano device.
Mol Ther Nucleic Acids 20:687-698, 2020.
doi: 10.1016/j.omtn.2020.04.004

6. Nakano I*, Tsuda M*, Kinugawa S, Fukushima A, Kakutani N, Takada S, Yokota T.
Loop Diuretic Use Is Associated with Skeletal Muscle Wasting in Patients with Heart Failure.
J Cardiol 76(1):109-114, 2020
https://www.journal-of-cardiology.com/article/S0914-5087(20)30018-6/fulltext

7. Kakutani N, Takada S (corresponding author), Nambu H, Matsumoto J, Furihata T, Yokota T, Fukushima A, Kinugawa S.
Angiotensin-converting-enzyme inhibitor prevents skeletal muscle fibrosis in myocardial infarction mice.
Skeletal Muscle 10;11, 2020.
https://skeletalmusclejournal.biomedcentral.com/articles/10.1186/s13395-020-00230-9

8. Shingu Y, Takada S, Yokota T, Shirakawa R, Yamada A, Ooka T, Katoh H, Kubota S, Matsui Y.
Correlation between increased atrial expression of genes related to fatty acid metabolism and autophagy in patients with chronic atrial fibrillation.
PLoS One 15(4):e0224713, 2020.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224713

9. Yamanashi K, Kinugawa S, Fukushima A, Kakutani N, Takada S, Obata Y, Nakano I, Yokota T, Kitaura Y, Shimomura Y, Anzai T.
Branched-chain amino acid supplementation ameliorates angiotensin II-induced skeletal muscle atrophy.
Life Sci250; 117593, 2020.
https://www.sciencedirect.com/science/article/abs/pii/S0024320520303416?via%3Dihub

10. Takahashi M, Kinugawa S, Takada S, Kakutani N, Furihata T, Sobirin MA, Fukushima A, Obata Y, Saito A, Ishimori N, Iwabuchi K, Tsutsui H.
The disruption of invariant natural killer T cells exacerbates cardiac hypertrophy and failure due to pressure overload in mice.
Exp Physiol105(3):489-501, 2020.
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP087652

11. Obata Y, Ishimori N, Saito A, Kinugawa S, Yokota T, Takada S, Nakano I, Kakutani N, Yamanashi K, Anzai T.
Activation of invariant natural killer T cells by alpha-galactosylceramide ameliorates doxorubicin-induced cardiotoxicity in mice.
Eur J Prev Cardiol2:2047487319901208, 2020.
https://academic.oup.com/eurjpc/article/27/19/2358/6125488?login=false

12. Maekawa S, Takada S (corresponding author), Furihata T, Fukushima A, Yokota T, Kinugawa S.
Mitochondrial respiration of complex II is not lower than that of complex I in mouse skeletal muscle.
Biochem Biophys Rep18;21:100717, 2020.
https://www.sciencedirect.com/science/article/pii/S2405580819302031?via%3Dihub

13. Nambu H*, Takada S* (first author and corresponding author), Fukushima A, Matsumoto J, Kakutani N, Maekawa S, Shirakawa R, Nakano I, Furihata T, Katayama T; Yamanashi K, Obata Y; Saito A; Yokota T; Kinugawa S.
Empagliflozin restores lowered exercise endurance capacity via the activation of skeletal muscle fatty acid oxidation in a murine model of heart failure.
Eur J Pharmacol886:172810, 2020.
https://www.sciencedirect.com/science/article/pii/S0014299919307629?via%3Dihub

14. Nakano I, Kinugawa S, Hori H, Fukushima A, Yokota T, Takada S, Kakutani N, Obata Y, Yamanashi K, Anzai T.
Serum Brain-Derived Neurotrophic Factor Levels are Associated with Skeletal Muscle Function but not with Muscle Mass in Patients with Heart Failure.
Int Heart J31;61(1):96-102, 2020.
https://www.jstage.jst.go.jp/article/ihj/61/1/61_19-400/_article


2019
1. Ishikawa K, Fukushima A, Yokota T, Takada S, Furihata T, Kakutani N, Yamanashi, K, Obata Y, Nakano I, Abe T, Kinugawa S, Anzai T.
Clinical Impacts and Associated Factors of Delayed Ambulation in Patients with Acute Heart Failure.
Circ Rep 1; 4: 179-186, 2019.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889457/

2. Shirakawa R, Yokota T, Nakajima T, Takada S, Yamane M, Furihata T, Maekawa S, Nambu H, Katayama T, Fukushima A, Saito A, Ishimori N, Dela F, Kinugawa S, Anzai T.
Mitochondrial reactive oxygen species generation in blood cells is associated with disease severity and exercise intolerance in heart failure patients.
Sci Rep 9:14709, 2019.
https://www.nature.com/articles/s41598-019-51298-3

3. Maekawa S, Takada S (corresponding author), Nambu H, Furihata T, Kakutani N, Setoyama D, Ueyanagi Y, Kang D, Sabe H, Kinugawa S.
Linoleic acid improves assembly of the CII subunit and CIII2/CIV complex of the mitochondrial oxidative phosphorylation system in heart failure.
Cell Commun Signal 17:128, 2019.
https://biosignaling.biomedcentral.com/articles/10.1186/s12964-019-0445-0

4. Katayama T, Kinugawa S, Takada S, Furihata T, Fukushima A, Yokota T, Anzai T, Hibino M, Harashima H, Yamada Y.
A mitochondrial delivery system using liposome-based nanocarriers that target myoblast cells.
Mitochondrion 49:66-72, 2019.
https://www.sciencedirect.com/science/article/abs/pii/S1567724918302666?via%3Dihub

5. Mazaki Y, Takada S, Nio-Kobayashi J, Maekawa S, Higashi T, Onodera Y, Sabe H.
Mitofusin 2 is involved in chemotaxis of neutrophil-like differentiated HL-60 cells.
Biochem Biophys Res Commun4;513(3):708-713, 2019.
https://www.sciencedirect.com/science/article/abs/pii/S0006291X1930659X?via%3Dihub

6. Nakajima T, Yokota T, Shingu Y, Yamada A, Iba Y, Ujihira K, Wakasa S, Ooka T, Takada S, Shirakawa R, Katayama T, Furihata T, Fukushima A, Matsuoka R, NishiharaH, Dela F, Nakanishi K, Matsui Y, Kinugawa S.
Impaired mitochondrial oxidative phosphorylation capacity in epicardial adipose tissue is associated with decreased concentration of adiponectin and severity of coronary atherosclerosis.
Sci Rep 5;9(1):3535, 2019.
https://www.nature.com/articles/s41598-019-40419-7

7. Kamada R, Yokoshiki H, Mitsuyama H, Watanabe M, Mizukami K, Tenma T, Takahashi M, Takada S, Anzai T.
Arrhythmogenic β-adrenergic signaling in cardiac hypertrophy: the role of small-conductance calcium-activated potassium channels via activation of CaMKII.
Eur J Pharmacol 884:110-117, 2019.
https://www.sciencedirect.com/science/article/abs/pii/S0014299918307106?via%3Dihub

8. Okita K, Takada S, Morita N, Takahashi M, Hirabayashi K, Yokota T, Kinugawa S.
Resistance training with interval blood flow restriction effectively enhances intramuscular metabolic stress with less ischemic duration and discomfort.
Appl Physiol Nutr Metab 44(7):759-764, 2019.
https://cdnsciencepub.com/doi/10.1139/apnm-2018-0321?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed


2018
1. Matsumoto J*, Takada S*, Kinugawa S, Furihata T, Nambu H, Kakutani N, Tsuda M, Fukushima A, Yokota T, Tanaka S, Takahashi H, Watanabe M, Hatakeyama S, Matsumoto M, Nakayama KI, Otsuka Y, Sabe H, Tsutsui H, Anzai T.
Brain-derived neurotrophic factor improves limited exercise capacity in mice with heart failure.
Circulation 138:2064-2066, 2018. * contributed equally to this work.
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.118.035212?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed

2. Kakutani N, Fukushima A, Yokota T, Katayama T, Nambu H, Shirakawa R, Maekawa S, Abe T, Takada S, Furihata T, Ono K, Okita K, Kinugawa S, Anzai T.
Impact of High Respiratory Exchange Ratio During Submaximal Exercise on Adverse Clinical Outcomes in Patients with Heart Failure.
Circ J 82:2753-2760, 2018.
https://www.jstage.jst.go.jp/article/circj/82/11/82_CJ-18-0103/_article

3. Tsuda M, Fukushima A, Matsumoto J, Takada S, Kakutani N, Nambu H, Yamanashi K, Furihata T, Yokota T, Okita K, Kinugawa S, Anzai T.
Protein Acetylation in Skeletal Muscle Mitochondria Is Involved in Impaired Fatty Acid Oxidation and Exercise Intolerance in Heart Failure.
J Cachexia Sarcopenia Muscle 9:844-859, 2018.
https://onlinelibrary.wiley.com/doi/10.1002/jcsm.12322

4. Tenma T, Mitsuyama H, Watanabe M, Kakutani N, Otsuka Y, Mizukami K, Kamada R, Takahashi M, Takada S, Sabe H, Tsutsui H, Yokoshiki H.
Small-Conductance Ca2+-Activated K+ Channel Activation Deteriorates Hypoxic Ventricular Arrhythmias via CaMKII in Cardiac Hypertrophy.
Am J Physiol Circ Heart Physiol315:H262-H272, 2018.
https://journals.physiology.org/doi/full/10.1152/ajpheart.00636.2017?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org

5. Kadoguchi T*, Takada S*, Yokota T, Furihata T, Matsumoto J, Tsuda M, Mizushima W, Fukushima A, Okita K, Kinugawa S.
Deletion of NAD(P)H oxidase 2 prevents angiotensin II-induced skeletal muscle atrophy.
BioMed Res Int 3194917, 10, 2018. * contributed equally to this work.
https://www.hindawi.com/journals/bmri/2018/3194917/

6. Shingu Y, Yokota T, Takada S, Niwano H, Ooka T, Katoh H, Tachibana T, Kubota S, Matsui Y.
Decreased gene expression of fatty acid binding protein 3 in the atrium of patients with new onset of atrial fibrillation in cardiac perioperative phase.
J Cardiol 71, 65-70, 2018.
https://www.journal-of-cardiology.com/article/S0914-5087(17)30193-4/fulltext


2017
1. Morita N, Kambayashi I, Okuda T, Oda S,Takada S, Nakajima T, Shide N, Shinkaiya H, Okita K.
Inverse relationship between sleep duration and cardio-ankle vascular index in children.
J Atheroscler Thromb 24: 819-826, 2017.
https://www.jstage.jst.go.jp/article/jat/24/8/24_36517/_article

2. Yokota T, Kinugawa S, Hirabayashi K, Suga T, Takada S, Omokawa M, Kadoguchi T, Takahashi M, Fukushima A, Matsushima S, Yamato M, Okita K, Tsutsui H.
Pioglitazone on improves whole-body aerobic capacity and skeletal muscle energy metabolism in patients with metabolic syndrome.
J Diabetes Investig2017; 8: 535–541.
https://onlinelibrary.wiley.com/doi/10.1111/jdi.12606


2016
1. Mizushima W, Takahashi H, Watanabe M, Kinugawa S, Matsushima S, Takada S, Yokota T, Furihata T, Matsumoto J, Tsuda M, Chiba I, Nagashima S, Yanagi S, Matsumoto M, Nakayama KI, Tsutsui H, Hatakeyama S.
The novel heart-specific RING finger protein 207 is involved in energy metabolism in cardiomyocytes.
J Mol Cell Cardiol100: 43-53, 2016.
https://www.jmcc-online.com/article/S0022-2828(16)30374-1/fulltext

2. Takada S, Masaki Y, Kinugawa S, Matsumoto J, Furihata T, Mizushima W, Kadoguchi T, Fukushima A, Homma T, Takahashi M, Harashima S, Matsushima S, Yokota T, Tanaka S, Okita K, Tsutsui H.
Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial biogenesis in mice with heart failure via activation of glucagon-like peptide-1 receptor signaling.
Cardiovasc Res 111: 338–347, 2016.
https://academic.oup.com/cardiovascres/article/111/4/338/1744964?login=false

3. Furihata T, Kinugawa S, Fukushima A, Takada S, Homma T, Masaki Y, Abe T, Yokota T, Oba K, Okita K, Tsutsui H.
Serum Myostatin Levels are Independently Associated with Skeletal Muscle Wasting in Patients with Heart Failure.
Int J Cardiol2016 220: 483-487, 2016.
https://www.internationaljournalofcardiology.com/article/S0167-5273(16)31237-2/fulltext

4. Furihata T, Kinugawa S, Takada S, Fukushima A, Takahashi M, Homma T, Masaki Y, Tsuda M, Matsumoto J, Mizushima W, Matsushima S, Yokota T, Tsutsui H. The experimental model of transition from compensated cardiac hypertrophy to failure created by transverse aortic constriction in mice.
IJC Heart & Vasculature 11: 24-28, 2016.
https://www.sciencedirect.com/science/article/pii/S2352906716300112?via%3Dihub

5. Fukushima A, Kinugawa S, Takada S, Matsumoto J, Furihata T, Mizushima W, Tsuda M, Yokota T, Matsushima S, Okita K, Tsutsui H.
Direct renin inhibitor ameliorates insulin resistance by improving insulin signaling and oxidative stress in the skeletal muscle from post-infarct heart failure in mice.
Eur J Pharmacol779: 147-156, 2016.
https://www.sciencedirect.com/science/article/abs/pii/S0014299916301443?via%3Dihub


2015
1. Takada S, Kinugawa S, Matsushima S, Takemoto D, Furihata T, Mizushima W, Fukushima A, Yokota T, Ono Y, Shibata H, Okita K, Tsutsui H.
Sesamin prevents decline in exercise capacity and impairment of skeletal muscle mitochondrial function in mice with high-fat diet-induced diabetes.
Exp Physiol100:1319-30, 2015.
https://physoc.onlinelibrary.wiley.com/doi/10.1113/EP085251

2. Mizukami K, Yokoshiki H, Mitsuyama H, Watanabe M, Tenma T, Takada S, Tsutsui H.
Small conductance Ca2+-activated K+ current is upregulated via the phosphorylation of CaMKII in cardiac hypertrophy from spontaneously hypertensive rats.
Am J Physiol Heart Circ Physiol309:H1066-74, 2015.
https://journals.physiology.org/doi/full/10.1152/ajpheart.00825.2014?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org

3. Takahashi M, Kinugawa S, Takada S, Hirabayashi K, Saito A, Yokota T, Matsushima S, Okita K, Tsutsui H.
Low-intensity exercise under ischemic conditions enhances metabolic stress in patients with heart failure.
Int J Cardiol201:142-144, 2015.
https://www.internationaljournalofcardiology.com/article/S0167-5273(15)30255-2/fulltext

4. Ono T*, Takada S*, Kinugawa S, Tsutsui H.
Curcumin ameliorates skeletal muscle atrophy in type I diabetic mice via inhibiting the protein ubiquitination.
Exp Physiol 100:1052-1063, 2015. * contributed equally to this work.
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP085049

5. Nishikawa M, Ishimori N, Takada S, Saito A, Kadoguchi T, Furihata T, Fukushima A, Matsushima S, Yokota T, Kinugawa S, Tsutsui H.
AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis in the skeletal muscle from mice with chronic kidney disease via reducing oxidative stress.
Nephrol Dial Transplant30:934-942, 2015.
https://academic.oup.com/ndt/article/30/6/934/2324950?login=false

6. Fukushima A, Kinugawa S, Homma T, Masaki Y, Furihata T, Yokota T, Matsushima S, Takada S, Kadoguchi T, Oba K, Okita K, Tsutsui H.
Serum brain-derived neurotropic factor level predicts adverse clinical outcomes in patients with heart failure.
J Card Fail21:300-306, 2015.
https://www.onlinejcf.com/article/S1071-9164(15)00023-8/fulltext

7. Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W, Nishikawa M, Takahashi M, Yokota T, Matsushima S, Okita K, Tsutsui H.
Angiotensin II can directly induce mitochondrial dysfunction, decrease oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle.
Exp Physiol100:312-322, 2015.
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/expphysiol.2014.084095


2014
1. Takada S, Hirabayashi K, Kinugawa S, Yokota T, Matsushima S, Suga T, Kadoguchi T, Fukushima A, Homma T, Mizushima W, Masaki Y, Furihata T, Katsuyama R, Okita K, Tsutsui H.
Pioglitazone Ameliorates the Lowered Exercise Capacity and Impaired Mitochondrial Function of the Skeletal Muscle in Type 2 Diabetic Mice.
Eur J Pharm 740:690-696, 2014.
https://www.sciencedirect.com/science/article/abs/pii/S0014299914004506?via%3Dihub

2. Hirabayashi K, Kinugawa S, Yokota T, Takada S, Fukushima A, Suga T, Takahashi M, Ono T, Morita N, Omokawa M, Harada K, Oyama-Manabe N, Shirato H, Matsushima S, Okita K, Tsutsui H.
Intramyocellular Lipid is Increased in the Skeletal Muscle of Patients with Dilated Cardiomyopathy with Lowered Exercise Capacity.
Int J Cardiol176:1110-1112, 2014.
https://www.internationaljournalofcardiology.com/article/S0167-5273(14)01323-0/fulltext

3. Fukushima A, Kinugawa S, Takada S, Matsushima S, Sobirin MA, Ono T, Takahashi M, Suga T, Homma T, Masaki Y, Furihata T, Kadoguchi T, Yokota T, Okita K, Tsutsui H.
(Pro)renin Receptor in the Skeletal Muscle is Involved in the Development of Insulin Resistance Associated with Post-Infarct Heart Failure in Mice.
Am J Physiol Endocrinol Metab 307:E503-514, 2014.
https://journals.physiology.org/doi/full/10.1152/ajpendo.00449.2013?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org

4. Suga T, Kinugawa S, Takada S, Kadoguchi T, Fukushima A, Homma T, Masaki Y, Furihata T, Takahashi M, Sobirin MA, Ono T, Hirabayashi K, Yokota T, Tanaka S, Okita K, Tsutsui H.
Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.
Endocrinology 155:68-80, 2014.
https://academic.oup.com/endo/article/155/1/68/2422441?login=false


2013
1. Fukushima A, Kinugawa S, Homma T, Masaki Y, Furihata T, Yokota T, Matsushima S, Abe T, Suga T, Takada S, Kadoguchi T, Katsuyama R, Oba K, Okita K, Tsutsui H.
Decreased Serum Brain-Derived Neurotrophic Factor Levels are Correlated with Exercise Intolerance in Patients with Heart Failure.
Int J Cardiol168:e142-144, 2013.
https://www.internationaljournalofcardiology.com/article/S0167-5273(13)01635-5/fulltext

2. Homma T, Kinugawa S, Takahashi M, Sobirin MA, Saito A, Fukushima A, Suga T, Takada S, Kadoguchi T, Masaki Y, Furihata T, Taniguchi M, Nakayama T, Ishimori N, Iwabuchi K, Tsutsui H.
Activation of invariant natural killer T cells by α-galactosylceramide ameliorates myocardial ischemia/reperfusion injury in mice.
J Mol Cell Cardiol14;62C:179-188, 2013.
https://www.jmcc-online.com/article/S0022-2828(13)00203-4/fulltext

3. Fukushima A, Kinugawa S, Homma T, Masaki Y, Furihata T, Abe T, Suga T, Takada S, Kadoguchi T, Okita K, Matsushima S, Tsutsui H.
Increased plasma soluble (pro)renin receptor levels are correlated with renal dysfunction in patients with heart failure.
Int J Cardiol11. doi:pii: S0167-5273(13) 00843-847, 2013.
https://www.internationaljournalofcardiology.com/article/S0167-5273(13)00843-7/fulltext

4. Yokota T, Kinugawa S, Yamato M, Hirabayashi K, Suga T, Takada S, Harada K, Morita N, Oyama-Manabe N, Kikuchi Y, Okita K, Tsutsui H.
Systemic oxidative stress is associated with lower aerobic capacity and impaired skeletal muscle energy metabolism in patients with metabolic syndrome.
Diabetes Care 36:1341-1346, 2013.
https://diabetesjournals.org/care/article/36/5/1341/29651/Systemic-Oxidative-Stress-Is-Associated-With-Lower

5. Takada S, Kinugawa S, Hirabayashi K, Suga T, Yokota T, Takahashi M, Fukushima A, Homma T, Ono T, Sobirin MA, Masaki Y, Mizushima W, Kadoguchi T, Okita K, Tsutsui H.
Angiotensin II receptor blocker improves the lowered exercise capacity and impaired mitochondrial function of the skeletal muscle in type 2 diabetic mice.
J Appl Physiol114:844-857, 2013.
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00053.2012?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org



2012
1. Takada S, Okita K, Suga T, Omokawa M, Kadoguchi T, Sato T, Takahashi M, Yokota T, Hirabayashi K, Morita N, Horiuchi M, Kinugawa S, Tsutsui H. Low-intensity exercise can increase muscle mass and strength proportionally to enhanced metabolic stress under ischemic conditions. J Appl Physiol 113:199-205, 2012.
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00149.2012?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org

2. Takada S, Okita K, Suga T, Omokawa M, Morita N, Horiuchi M, Kadoguchi T, Takahashi M, Hirabayashi K, Yokota T, Kinugawa S, Tsutsui H. Blood Flow Restriction Exercise in Sprinters and Endurance Runners. Med Sci Sports Exerc 44:413-419, 2012.
https://journals.lww.com/acsm-msse/Fulltext/2012/03000/Blood_Flow_Restriction_Exercise_in_Sprinters_and.7.aspx

3. Suga T, Okita K, Takada S, Omokawa M, Kadoguchi T, Yokota T, Hirabayashi K, Takahashi M, Morita N, Horiuchi M, Kinugawa S, Tsutsui H. Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. Eur J Appl Physiol 112:3915-3920, 2012.
https://link.springer.com/article/10.1007/s00421-012-2377-x

4. Sobirin MA, Kinugawa S, Takahashi M, Fukushima A, Homma T, Ono T, Hirabayashi K, Suga T, Azalia P, Takada S, Taniguchi M, Nakayama T, Ishimori N, Iwabuchi K, Tsutsui H. Activation of natural killer T cells ameliorates postinfarct cardiac remodeling and failure in mice. Circ Res 111:1037-1047, 2012.
https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.112.270132?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed


2010
1. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Omokawa M, Kinugawa S, Tsutsui H. Dose-effect on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 108: 1563–1567, 2010.
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00504.2009?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org

2. Horiuchi M, Okita K, Takada S, Omokawa M, Suga T, Morita N, Hirabayashi K, Yokota T, Kinugawa S, Tsutsui H. Effects of Oral Single-Dose Administration of Sarpogrelate Hydrochloride on Saturation O2 of Calf Muscle During Plantar Flexion Exercise. Adv Exp Med Biol 662:531-536, 2010.
https://link.springer.com/chapter/10.1007/978-1-4419-1241-1_77

2009
1. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Takahashi T, Omokawa M, Kinugawa S, Tsutsui H. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 106: 1119-1124, 2009.
https://journals.physiology.org/doi/full/10.1152/japplphysiol.90368.2008?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org

2. Kishimoto N, Okita K, Takada S, Sakuma I, Saijo Y, Chiba H, Ishii K, Kishi R, Tsutsui H. Lipoprotein metabolism, insulin resistance, and adipocytokine levels in Japanese female adolescents with a normal body mass index and high body fat mass. Circ J 73:534-9, 2009.
https://www.jstage.jst.go.jp/article/circj/73/3/73_CJ-08-0381/_article