経歴
- 英文論文(総説)
- 2022
Takada S (first author and corresponding author), Sabe H, Kinugawa S.
Treatments for skeletal muscle abnormalities in heart failure: sodium-glucose
transporter 2 and ketone bodies.
Am J Physiol Heart Circ Physiol 1;322(2):H117-H128, 2022.
https://journals.physiology.org/doi/abs/10.1152/ajpheart.00100.2021
2020
Takada S (first author and corresponding author), Sabe H, Kinugawa S.
Abnormalities of skeletal muscle, adipocyte tissue, and lipid metabolism
in heart failure: practical therapeutic targets.
Front Cardiovasc Med12;7:79, 2020.
doi: 10.3389/fcvm.2020.00079
2015
Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H.
Skeletal Muscle Abnormalities in Heart Failure.
Int Heart J 56:475-484, 2015.
https://www.jstage.jst.go.jp/article/ihj/56/5/56_15-108/_article
2013
1. Okita K, Takada S.
Application of Blood Flow Restriction in Resistance Exercise Assessed by
Intramuscular Metabolic Stress.
J Nov Physiother 3:6, 2013.
2. Morita N, Takada S, Okita K.
Influence of stretch and pressure as mechanical stresses on skeletal muscle.
Jpn J Phys Fitness Sports Med 62: 347-350, 2013.
https://www.jstage.jst.go.jp/article/jpfsm/2/3/2_347/_article
- 英文論文(原著)
- 2021
1. Suga T, Dora K, Tomoo K, Mok E, Sugimoto T, Takada S, Hashimoto T, Isaka T.
Exercise adherence-related perceptual responses to low-load blood flow
restriction resistance exercise in young adults: A pilot study.
Physiol Rep 9(23):e15122, 2021.
https://physoc.onlinelibrary.wiley.com/doi/10.14814/phy2.15122
2. Tomoo K, Suga T, Dora K, Sugimoto T, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Impact of inter-set short rest interval length on inhibitory control improvements
following low-intensity resistance exercise in healthy young males.
Front Physiol 22;12:741966, 2021.
https://www.frontiersin.org/articles/10.3389/fphys.2021.741966/full
3. Dora K, Suga T, Tomoo K, Sugimoto T, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Similar improvements in cognitive inhibitory control following low-intensity
resistance exercise with slow movement and tonic force generation and high-intensity
resistance exercise in healthy young adults: A preliminary study.
J Physiol Sci17;71(1):22, 2021.
https://jps.biomedcentral.com/articles/10.1186/s12576-021-00806-0
4. Kakutani N, Takada S (corresponding author), Nambu H, Maekawa S, Hagiwara H, Yamanashi K, Obata Y, Nakano I, Fumoto
Y, Hata S, Furihata T, Yokota T, Fukushima A, Kinugawa S.
Angiotensin-converting enzyme inhibitor prevents skeletal muscle fibrosis
in diabetic mice.
Exp Physiol 106(8):1785-1793, 2021.
https://physoc.onlinelibrary.wiley.com/doi/10.1113/EP089375
5. Furihata T*, Maekawa S*, Takada S, Kakutani N, Nambu H, Shirakawa R, Yokota T, Kinugawa S.
Premedication with pioglitazone prevents doxorubicin-induced left ventricular
dysfunction in mice.
BMC Pharmacol Toxicol7;22(1):27, 2021.
https://bmcpharmacoltoxicol.biomedcentral.com/articles/10.1186/s40360-021-00495-w
6. Obata Y, Kakutani N, Kinugawa S, Fukushima A, Yokota T, Takada S, Ono T, Sota T, Kinugasa Y, Takahashi M, Matsuo H, Matsukawa R, Yoshida
I, Yokota I, Yamamoto K, Tsuchihashi-Makaya M.
Impact of Inadequate Calorie Intake on Mortality and Hospitalization in
Stable Patients with Chronic Heart Failure.
Nutrients 13:874, 2021.
https://www.mdpi.com/2072-6643/13/3/874
7. Yokota T, Kinugawa S, Hirabayashi K, Yamato M, Takada S, Suga T, Nakano I, Fukushima A, Matsushima S, Okita K, Tsutsui H. Systemic
oxidative stress is associated with lower aerobic capacity and impaired
skeletal muscle energy metabolism in heart failure patients.
Sci Rep 11:2272, 2021.
https://www.nature.com/articles/s41598-021-81736-0
8. Furihata T, Takada S, Kakutani N, Maekawa S, Tsuda M, Matsumoto J, Mizushima W, Fukushima A,
Yokota T, Enzan N, Matsushima S, Handa H, Fumoto Y, Nio-Kobayashi J, Iwanaga
T, Tanaka S, Tsutsui H, Sabe H, Kinugawa S.
Naturally occurring mitoNEET downregulation in aged hearts is a potential
cause of age-associated heart failure.
Commun Biol 4:138, 2021.
https://www.nature.com/articles/s42003-021-01675-4
9. Nambu H, Takada S (corresponding author), Maekawa S, Matsumoto J, Kakutani N, Furihata T, Shirakawa R, Katayama
T, Nakajima T, Yamanashi K, Obata Y, Nakano I, Tsuda M, Saito A, Fukushima
A, Yokota T, Nio-Kobayashi J, Yasui H, Higashikawa K, Kuge Y, Anzai T,
Sabe H, Kinugawa S.
Inhibition of xanthine oxidase in the acute phase of myocardial infarction
prevents skeletal muscle abnormalities and exercise intolerance.
Cardiovasc Res 22;117(3):805-819, 2021.
https://academic.oup.com/cardiovascres/article-abstract/117/3/805/5836830?redirectedFrom=fulltext
10. Dora K, Suga T, Tomoo K, Sugimoto T, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Effect of very low-intensity resistance exercise with slow movement and
tonic force generation on post-exercise inhibitory control.
Heliyon 18;7(2):e06261, 2021
https://www.sciencedirect.com/science/article/pii/S2405844021003662
11. Sugimoto T, Suga T, Tomoo K, Dora K, Mok E, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Blood flow restriction improves executive function following walking.
Med Sci Sports Exerc 53(1):131-138, 2021.
https://journals.lww.com/acsm-msse/Fulltext/2021/01000/Blood_Flow_Restriction_Improves_Executive_Function.16.aspx
12. Matsumoto J*, Takada S*, Furihata T, Nambu H, Kakutani N, Maekawa S, Mizushima W, Nakano I, Fukushima
A, Yokota T, Tanaka S, Handa H, Sabe H, Kinugawa S.
Brain-Derived Neurotrophic Factor Improves Impaired Fatty Acid Oxidation
Via the Activation of Adenosine Monophosphate-activated Protein Kinase-α
- Proliferator-Activated Receptor-r Coactivator-1α Signaling in Skeletal
Muscle of Mice With Heart Failure.
Circulation Heart Fail2021;13:e005890. * contributed equally to this work.
https://www.ahajournals.org/doi/10.1161/CIRCHEARTFAILURE.119.005890
2020
1. Abe T, Yokota T, Fukushima A, Kakutani N, Katayama T, Shirakawa R, Maekawa
S, Nambu H, Obata Y, Yamanashi K, Nakano I, Takada S, Yokota I, Okita K, Kinugawa S, Anzai T.
Type 2 diabetes is an independent predictor of lowered peak aerobic capacity
in heart failure patients with non-reduced or reduced left ventricular
ejection fraction. Cardiovasc Diabetol 19;19(1):142, 2020.
https://cardiab.biomedcentral.com/articles/10.1186/s12933-020-01114-4
2. Nakano I*, Hori H*, Fukushima A, Yokota T, Kinugawa S, Takada S, Yamanashi K, Obata Y, Kitaura Y, Kakutani N, Abe T, Anzai T.
Enhanced Echo Intensity of Skeletal Muscle Is Associated with Exercise
Intolerance in Patients with Heart Failure.
J Card Fail 26(8):685-693, 2020.
https://www.onlinejcf.com/article/S1071-9164(19)30416-6/fulltext
3. Mok E, Suga T, Sugimoto T, Tomoo K, Dora K, Takada S, Hashimoto T, Isaka T.
Negative effects of blood flow restriction on perceptual responses to walking
in healthy young adults: a pilot study.
Heliyon 6:e04745, 2020.
doi: 10.1016/j.heliyon.2020.e04745
4. Tomoo K, Suga T, Sugimoto T, Tanaka D, Shimoho K, Dora K, Mok E, Matsumoto
S, Tsukamoto H, Takada S, Hashimoto T, Isaka T.
Work volume is an important variable in determining the degree of inhibitory
control improvements following resistance exercise.
Physiol Rep 8(15):e14527, 2020.
https://physoc.onlinelibrary.wiley.com/doi/full/10.14814/phy2.14527
5. Kawamura E, Maruyama M, Abe J, Sudo A, Takeda A, Takada S, Yokota T, Kinugawa S, Harashima H. Yamada Y.
Validation of gene therapy for mutant mitochondria by delivering mitochondrial
RNA using a MITO-Porter, a liposome-based nano device.
Mol Ther Nucleic Acids 20:687-698, 2020.
doi: 10.1016/j.omtn.2020.04.004
6. Nakano I*, Tsuda M*, Kinugawa S, Fukushima A, Kakutani N, Takada S, Yokota T.
Loop Diuretic Use Is Associated with Skeletal Muscle Wasting in Patients
with Heart Failure.
J Cardiol 76(1):109-114, 2020
https://www.journal-of-cardiology.com/article/S0914-5087(20)30018-6/fulltext
7. Kakutani N, Takada S (corresponding author), Nambu H, Matsumoto J, Furihata T, Yokota T, Fukushima A, Kinugawa S.
Angiotensin-converting-enzyme inhibitor prevents skeletal muscle fibrosis
in myocardial infarction mice.
Skeletal Muscle 10;11, 2020.
https://skeletalmusclejournal.biomedcentral.com/articles/10.1186/s13395-020-00230-9
8. Shingu Y, Takada S, Yokota T, Shirakawa R, Yamada A, Ooka T, Katoh H, Kubota S, Matsui Y.
Correlation between increased atrial expression of genes related to fatty
acid metabolism and autophagy in patients with chronic atrial fibrillation.
PLoS One 15(4):e0224713, 2020.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224713
9. Yamanashi K, Kinugawa S, Fukushima A, Kakutani N, Takada S, Obata Y, Nakano I, Yokota T, Kitaura Y, Shimomura Y, Anzai T.
Branched-chain amino acid supplementation ameliorates angiotensin II-induced
skeletal muscle atrophy.
Life Sci250; 117593, 2020.
https://www.sciencedirect.com/science/article/abs/pii/S0024320520303416?via%3Dihub
10. Takahashi M, Kinugawa S, Takada S, Kakutani N, Furihata T, Sobirin MA, Fukushima A, Obata Y, Saito A, Ishimori
N, Iwabuchi K, Tsutsui H.
The disruption of invariant natural killer T cells exacerbates cardiac
hypertrophy and failure due to pressure overload in mice.
Exp Physiol105(3):489-501, 2020.
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP087652
11. Obata Y, Ishimori N, Saito A, Kinugawa S, Yokota T, Takada S, Nakano I, Kakutani N, Yamanashi K, Anzai T.
Activation of invariant natural killer T cells by alpha-galactosylceramide
ameliorates doxorubicin-induced cardiotoxicity in mice.
Eur J Prev Cardiol2:2047487319901208, 2020.
https://academic.oup.com/eurjpc/article/27/19/2358/6125488?login=false
12. Maekawa S, Takada S (corresponding author), Furihata T, Fukushima A, Yokota T, Kinugawa S.
Mitochondrial respiration of complex II is not lower than that of complex
I in mouse skeletal muscle.
Biochem Biophys Rep18;21:100717, 2020.
https://www.sciencedirect.com/science/article/pii/S2405580819302031?via%3Dihub
13. Nambu H*, Takada S* (first author and corresponding author), Fukushima A, Matsumoto J, Kakutani N, Maekawa S, Shirakawa R, Nakano
I, Furihata T, Katayama T; Yamanashi K, Obata Y; Saito A; Yokota T; Kinugawa
S.
Empagliflozin restores lowered exercise endurance capacity via the activation
of skeletal muscle fatty acid oxidation in a murine model of heart failure.
Eur J Pharmacol886:172810, 2020.
https://www.sciencedirect.com/science/article/pii/S0014299919307629?via%3Dihub
14. Nakano I, Kinugawa S, Hori H, Fukushima A, Yokota T, Takada S, Kakutani N, Obata Y, Yamanashi K, Anzai T.
Serum Brain-Derived Neurotrophic Factor Levels are Associated with Skeletal
Muscle Function but not with Muscle Mass in Patients with Heart Failure.
Int Heart J31;61(1):96-102, 2020.
https://www.jstage.jst.go.jp/article/ihj/61/1/61_19-400/_article
2019
1. Ishikawa K, Fukushima A, Yokota T, Takada S, Furihata T, Kakutani N, Yamanashi, K, Obata Y, Nakano I, Abe T, Kinugawa
S, Anzai T.
Clinical Impacts and Associated Factors of Delayed Ambulation in Patients
with Acute Heart Failure.
Circ Rep 1; 4: 179-186, 2019.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889457/
2. Shirakawa R, Yokota T, Nakajima T, Takada S, Yamane M, Furihata T, Maekawa S, Nambu H, Katayama T, Fukushima A, Saito
A, Ishimori N, Dela F, Kinugawa S, Anzai T.
Mitochondrial reactive oxygen species generation in blood cells is associated
with disease severity and exercise intolerance in heart failure patients.
Sci Rep 9:14709, 2019.
https://www.nature.com/articles/s41598-019-51298-3
3. Maekawa S, Takada S (corresponding author), Nambu H, Furihata T, Kakutani N, Setoyama D, Ueyanagi Y, Kang D, Sabe
H, Kinugawa S.
Linoleic acid improves assembly of the CII subunit and CIII2/CIV complex
of the mitochondrial oxidative phosphorylation system in heart failure.
Cell Commun Signal 17:128, 2019.
https://biosignaling.biomedcentral.com/articles/10.1186/s12964-019-0445-0
4. Katayama T, Kinugawa S, Takada S, Furihata T, Fukushima A, Yokota T, Anzai T, Hibino M, Harashima H, Yamada
Y.
A mitochondrial delivery system using liposome-based nanocarriers that
target myoblast cells.
Mitochondrion 49:66-72, 2019.
https://www.sciencedirect.com/science/article/abs/pii/S1567724918302666?via%3Dihub
5. Mazaki Y, Takada S, Nio-Kobayashi J, Maekawa S, Higashi T, Onodera Y, Sabe H.
Mitofusin 2 is involved in chemotaxis of neutrophil-like differentiated
HL-60 cells.
Biochem Biophys Res Commun4;513(3):708-713, 2019.
https://www.sciencedirect.com/science/article/abs/pii/S0006291X1930659X?via%3Dihub
6. Nakajima T, Yokota T, Shingu Y, Yamada A, Iba Y, Ujihira K, Wakasa S,
Ooka T, Takada S, Shirakawa R, Katayama T, Furihata T, Fukushima A, Matsuoka R, NishiharaH,
Dela F, Nakanishi K, Matsui Y, Kinugawa S.
Impaired mitochondrial oxidative phosphorylation capacity in epicardial
adipose tissue is associated with decreased concentration of adiponectin
and severity of coronary atherosclerosis.
Sci Rep 5;9(1):3535, 2019.
https://www.nature.com/articles/s41598-019-40419-7
7. Kamada R, Yokoshiki H, Mitsuyama H, Watanabe M, Mizukami K, Tenma T,
Takahashi M, Takada S, Anzai T.
Arrhythmogenic β-adrenergic signaling in cardiac hypertrophy: the role
of small-conductance calcium-activated potassium channels via activation
of CaMKII.
Eur J Pharmacol 884:110-117, 2019.
https://www.sciencedirect.com/science/article/abs/pii/S0014299918307106?via%3Dihub
8. Okita K, Takada S, Morita N, Takahashi M, Hirabayashi K, Yokota T, Kinugawa S.
Resistance training with interval blood flow restriction effectively enhances
intramuscular metabolic stress with less ischemic duration and discomfort.
Appl Physiol Nutr Metab 44(7):759-764, 2019.
https://cdnsciencepub.com/doi/10.1139/apnm-2018-0321?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
2018
1. Matsumoto J*, Takada S*, Kinugawa S, Furihata T, Nambu H, Kakutani N, Tsuda M, Fukushima A, Yokota
T, Tanaka S, Takahashi H, Watanabe M, Hatakeyama S, Matsumoto M, Nakayama
KI, Otsuka Y, Sabe H, Tsutsui H, Anzai T.
Brain-derived neurotrophic factor improves limited exercise capacity in
mice with heart failure.
Circulation 138:2064-2066, 2018. * contributed equally to this work.
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.118.035212?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
2. Kakutani N, Fukushima A, Yokota T, Katayama T, Nambu H, Shirakawa R,
Maekawa S, Abe T, Takada S, Furihata T, Ono K, Okita K, Kinugawa S, Anzai T.
Impact of High Respiratory Exchange Ratio During Submaximal Exercise on
Adverse Clinical Outcomes in Patients with Heart Failure.
Circ J 82:2753-2760, 2018.
https://www.jstage.jst.go.jp/article/circj/82/11/82_CJ-18-0103/_article
3. Tsuda M, Fukushima A, Matsumoto J, Takada S, Kakutani N, Nambu H, Yamanashi K, Furihata T, Yokota T, Okita K, Kinugawa
S, Anzai T.
Protein Acetylation in Skeletal Muscle Mitochondria Is Involved in Impaired
Fatty Acid Oxidation and Exercise Intolerance in Heart Failure.
J Cachexia Sarcopenia Muscle 9:844-859, 2018.
https://onlinelibrary.wiley.com/doi/10.1002/jcsm.12322
4. Tenma T, Mitsuyama H, Watanabe M, Kakutani N, Otsuka Y, Mizukami K,
Kamada R, Takahashi M, Takada S, Sabe H, Tsutsui H, Yokoshiki H.
Small-Conductance Ca2+-Activated K+ Channel Activation Deteriorates Hypoxic
Ventricular Arrhythmias via CaMKII in Cardiac Hypertrophy.
Am J Physiol Circ Heart Physiol315:H262-H272, 2018.
https://journals.physiology.org/doi/full/10.1152/ajpheart.00636.2017?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
5. Kadoguchi T*, Takada S*, Yokota T, Furihata T, Matsumoto J, Tsuda M, Mizushima W, Fukushima A,
Okita K, Kinugawa S.
Deletion of NAD(P)H oxidase 2 prevents angiotensin II-induced skeletal
muscle atrophy.
BioMed Res Int 3194917, 10, 2018. * contributed equally to this work.
https://www.hindawi.com/journals/bmri/2018/3194917/
6. Shingu Y, Yokota T, Takada S, Niwano H, Ooka T, Katoh H, Tachibana T,
Kubota S, Matsui Y.
Decreased gene expression of fatty acid binding protein 3 in the atrium
of patients with new onset of atrial fibrillation in cardiac perioperative
phase.
J Cardiol 71, 65-70, 2018.
https://www.journal-of-cardiology.com/article/S0914-5087(17)30193-4/fulltext
2017
1. Morita N, Kambayashi I, Okuda T, Oda S,Takada S, Nakajima T, Shide N, Shinkaiya H, Okita K.
Inverse relationship between sleep duration and cardio-ankle vascular index
in children.
J Atheroscler Thromb 24: 819-826, 2017.
https://www.jstage.jst.go.jp/article/jat/24/8/24_36517/_article
2. Yokota T, Kinugawa S, Hirabayashi K, Suga T, Takada S, Omokawa M, Kadoguchi T, Takahashi M, Fukushima A, Matsushima S, Yamato
M, Okita K, Tsutsui H.
Pioglitazone on improves whole-body aerobic capacity and skeletal muscle
energy metabolism in patients with metabolic syndrome.
J Diabetes Investig2017; 8: 535–541.
https://onlinelibrary.wiley.com/doi/10.1111/jdi.12606
2016
1. Mizushima W, Takahashi H, Watanabe M, Kinugawa S, Matsushima S, Takada S, Yokota T, Furihata T, Matsumoto J, Tsuda M, Chiba I, Nagashima S, Yanagi
S, Matsumoto M, Nakayama KI, Tsutsui H, Hatakeyama S.
The novel heart-specific RING finger protein 207 is involved in energy
metabolism in cardiomyocytes.
J Mol Cell Cardiol100: 43-53, 2016.
https://www.jmcc-online.com/article/S0022-2828(16)30374-1/fulltext
2. Takada S, Masaki Y, Kinugawa S, Matsumoto J, Furihata T, Mizushima W, Kadoguchi
T, Fukushima A, Homma T, Takahashi M, Harashima S, Matsushima S, Yokota
T, Tanaka S, Okita K, Tsutsui H.
Dipeptidyl peptidase-4 inhibitor improved exercise capacity and mitochondrial
biogenesis in mice with heart failure via activation of glucagon-like peptide-1
receptor signaling.
Cardiovasc Res 111: 338–347, 2016.
https://academic.oup.com/cardiovascres/article/111/4/338/1744964?login=false
3. Furihata T, Kinugawa S, Fukushima A, Takada S, Homma T, Masaki Y, Abe T, Yokota T, Oba K, Okita K, Tsutsui H.
Serum Myostatin Levels are Independently Associated with Skeletal Muscle
Wasting in Patients with Heart Failure.
Int J Cardiol2016 220: 483-487, 2016.
https://www.internationaljournalofcardiology.com/article/S0167-5273(16)31237-2/fulltext
4. Furihata T, Kinugawa S, Takada S, Fukushima A, Takahashi M, Homma T, Masaki Y, Tsuda M, Matsumoto J, Mizushima
W, Matsushima S, Yokota T, Tsutsui H. The experimental model of transition
from compensated cardiac hypertrophy to failure created by transverse aortic
constriction in mice.
IJC Heart & Vasculature 11: 24-28, 2016.
https://www.sciencedirect.com/science/article/pii/S2352906716300112?via%3Dihub
5. Fukushima A, Kinugawa S, Takada S, Matsumoto J, Furihata T, Mizushima W, Tsuda M, Yokota T, Matsushima S,
Okita K, Tsutsui H.
Direct renin inhibitor ameliorates insulin resistance by improving insulin
signaling and oxidative stress in the skeletal muscle from post-infarct
heart failure in mice.
Eur J Pharmacol779: 147-156, 2016.
https://www.sciencedirect.com/science/article/abs/pii/S0014299916301443?via%3Dihub
2015
1. Takada S, Kinugawa S, Matsushima S, Takemoto D, Furihata T, Mizushima W, Fukushima
A, Yokota T, Ono Y, Shibata H, Okita K, Tsutsui H.
Sesamin prevents decline in exercise capacity and impairment of skeletal
muscle mitochondrial function in mice with high-fat diet-induced diabetes.
Exp Physiol100:1319-30, 2015.
https://physoc.onlinelibrary.wiley.com/doi/10.1113/EP085251
2. Mizukami K, Yokoshiki H, Mitsuyama H, Watanabe M, Tenma T, Takada S, Tsutsui H.
Small conductance Ca2+-activated K+ current is upregulated via the phosphorylation
of CaMKII in cardiac hypertrophy from spontaneously hypertensive rats.
Am J Physiol Heart Circ Physiol309:H1066-74, 2015.
https://journals.physiology.org/doi/full/10.1152/ajpheart.00825.2014?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
3. Takahashi M, Kinugawa S, Takada S, Hirabayashi K, Saito A, Yokota T,
Matsushima S, Okita K, Tsutsui H.
Low-intensity exercise under ischemic conditions enhances metabolic stress
in patients with heart failure.
Int J Cardiol201:142-144, 2015.
https://www.internationaljournalofcardiology.com/article/S0167-5273(15)30255-2/fulltext
4. Ono T*, Takada S*, Kinugawa S, Tsutsui H.
Curcumin ameliorates skeletal muscle atrophy in type I diabetic mice via
inhibiting the protein ubiquitination.
Exp Physiol 100:1052-1063, 2015. * contributed equally to this work.
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/EP085049
5. Nishikawa M, Ishimori N, Takada S, Saito A, Kadoguchi T, Furihata T, Fukushima A, Matsushima S, Yokota T,
Kinugawa S, Tsutsui H.
AST-120 ameliorates lowered exercise capacity and mitochondrial biogenesis
in the skeletal muscle from mice with chronic kidney disease via reducing
oxidative stress.
Nephrol Dial Transplant30:934-942, 2015.
https://academic.oup.com/ndt/article/30/6/934/2324950?login=false
6. Fukushima A, Kinugawa S, Homma T, Masaki Y, Furihata T, Yokota T, Matsushima
S, Takada S, Kadoguchi T, Oba K, Okita K, Tsutsui H.
Serum brain-derived neurotropic factor level predicts adverse clinical
outcomes in patients with heart failure.
J Card Fail21:300-306, 2015.
https://www.onlinejcf.com/article/S1071-9164(15)00023-8/fulltext
7. Kadoguchi T, Kinugawa S, Takada S, Fukushima A, Furihata T, Homma T, Masaki Y, Mizushima W, Nishikawa M,
Takahashi M, Yokota T, Matsushima S, Okita K, Tsutsui H.
Angiotensin II can directly induce mitochondrial dysfunction, decrease
oxidative fibre number and induce atrophy in mouse hindlimb skeletal muscle.
Exp Physiol100:312-322, 2015.
https://physoc.onlinelibrary.wiley.com/doi/full/10.1113/expphysiol.2014.084095
2014
1. Takada S, Hirabayashi K, Kinugawa S, Yokota T, Matsushima S, Suga T, Kadoguchi
T, Fukushima A, Homma T, Mizushima W, Masaki Y, Furihata T, Katsuyama R,
Okita K, Tsutsui H.
Pioglitazone Ameliorates the Lowered Exercise Capacity and Impaired Mitochondrial
Function of the Skeletal Muscle in Type 2 Diabetic Mice.
Eur J Pharm 740:690-696, 2014.
https://www.sciencedirect.com/science/article/abs/pii/S0014299914004506?via%3Dihub
2. Hirabayashi K, Kinugawa S, Yokota T, Takada S, Fukushima A, Suga T, Takahashi M, Ono T, Morita N, Omokawa M, Harada
K, Oyama-Manabe N, Shirato H, Matsushima S, Okita K, Tsutsui H.
Intramyocellular Lipid is Increased in the Skeletal Muscle of Patients
with Dilated Cardiomyopathy with Lowered Exercise Capacity.
Int J Cardiol176:1110-1112, 2014.
https://www.internationaljournalofcardiology.com/article/S0167-5273(14)01323-0/fulltext
3. Fukushima A, Kinugawa S, Takada S, Matsushima S, Sobirin MA, Ono T, Takahashi M, Suga T, Homma T, Masaki
Y, Furihata T, Kadoguchi T, Yokota T, Okita K, Tsutsui H.
(Pro)renin Receptor in the Skeletal Muscle is Involved in the Development
of Insulin Resistance Associated with Post-Infarct Heart Failure in Mice.
Am J Physiol Endocrinol Metab 307:E503-514, 2014.
https://journals.physiology.org/doi/full/10.1152/ajpendo.00449.2013?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
4. Suga T, Kinugawa S, Takada S, Kadoguchi T, Fukushima A, Homma T, Masaki Y, Furihata T, Takahashi M,
Sobirin MA, Ono T, Hirabayashi K, Yokota T, Tanaka S, Okita K, Tsutsui
H.
Combination of exercise training and diet restriction normalizes limited
exercise capacity and impaired skeletal muscle function in diet-induced
diabetic mice.
Endocrinology 155:68-80, 2014.
https://academic.oup.com/endo/article/155/1/68/2422441?login=false
2013
1. Fukushima A, Kinugawa S, Homma T, Masaki Y, Furihata T, Yokota T, Matsushima
S, Abe T, Suga T, Takada S, Kadoguchi T, Katsuyama R, Oba K, Okita K, Tsutsui H.
Decreased Serum Brain-Derived Neurotrophic Factor Levels are Correlated
with Exercise Intolerance in Patients with Heart Failure.
Int J Cardiol168:e142-144, 2013.
https://www.internationaljournalofcardiology.com/article/S0167-5273(13)01635-5/fulltext
2. Homma T, Kinugawa S, Takahashi M, Sobirin MA, Saito A, Fukushima A,
Suga T, Takada S, Kadoguchi T, Masaki Y, Furihata T, Taniguchi M, Nakayama T, Ishimori
N, Iwabuchi K, Tsutsui H.
Activation of invariant natural killer T cells by α-galactosylceramide
ameliorates myocardial ischemia/reperfusion injury in mice.
J Mol Cell Cardiol14;62C:179-188, 2013.
https://www.jmcc-online.com/article/S0022-2828(13)00203-4/fulltext
3. Fukushima A, Kinugawa S, Homma T, Masaki Y, Furihata T, Abe T, Suga
T, Takada S, Kadoguchi T, Okita K, Matsushima S, Tsutsui H.
Increased plasma soluble (pro)renin receptor levels are correlated with
renal dysfunction in patients with heart failure.
Int J Cardiol11. doi:pii: S0167-5273(13) 00843-847, 2013.
https://www.internationaljournalofcardiology.com/article/S0167-5273(13)00843-7/fulltext
4. Yokota T, Kinugawa S, Yamato M, Hirabayashi K, Suga T, Takada S, Harada K, Morita N, Oyama-Manabe N, Kikuchi Y, Okita K, Tsutsui H.
Systemic oxidative stress is associated with lower aerobic capacity and
impaired skeletal muscle energy metabolism in patients with metabolic syndrome.
Diabetes Care 36:1341-1346, 2013.
https://diabetesjournals.org/care/article/36/5/1341/29651/Systemic-Oxidative-Stress-Is-Associated-With-Lower
5. Takada S, Kinugawa S, Hirabayashi K, Suga T, Yokota T, Takahashi M, Fukushima A,
Homma T, Ono T, Sobirin MA, Masaki Y, Mizushima W, Kadoguchi T, Okita K,
Tsutsui H.
Angiotensin II receptor blocker improves the lowered exercise capacity
and impaired mitochondrial function of the skeletal muscle in type 2 diabetic
mice.
J Appl Physiol114:844-857, 2013.
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00053.2012?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
2012
1. Takada S, Okita K, Suga T, Omokawa M, Kadoguchi T, Sato T, Takahashi M, Yokota
T, Hirabayashi K, Morita N, Horiuchi M, Kinugawa S, Tsutsui H. Low-intensity
exercise can increase muscle mass and strength proportionally to enhanced
metabolic stress under ischemic conditions. J Appl Physiol 113:199-205, 2012.
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00149.2012?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
2. Takada S, Okita K, Suga T, Omokawa M, Morita N, Horiuchi M, Kadoguchi T, Takahashi
M, Hirabayashi K, Yokota T, Kinugawa S, Tsutsui H. Blood Flow Restriction
Exercise in Sprinters and Endurance Runners. Med Sci Sports Exerc 44:413-419, 2012.
https://journals.lww.com/acsm-msse/Fulltext/2012/03000/Blood_Flow_Restriction_Exercise_in_Sprinters_and.7.aspx
3. Suga T, Okita K, Takada S, Omokawa M, Kadoguchi T, Yokota T, Hirabayashi K, Takahashi M, Morita
N, Horiuchi M, Kinugawa S, Tsutsui H. Effect of multiple set on intramuscular
metabolic stress during low-intensity resistance exercise with blood flow
restriction. Eur J Appl Physiol 112:3915-3920, 2012.
https://link.springer.com/article/10.1007/s00421-012-2377-x
4. Sobirin MA, Kinugawa S, Takahashi M, Fukushima A, Homma T, Ono T, Hirabayashi
K, Suga T, Azalia P, Takada S, Taniguchi M, Nakayama T, Ishimori N, Iwabuchi K, Tsutsui H. Activation
of natural killer T cells ameliorates postinfarct cardiac remodeling and
failure in mice. Circ Res 111:1037-1047, 2012.
https://www.ahajournals.org/doi/10.1161/CIRCRESAHA.112.270132?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200pubmed
2010
1. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Omokawa M, Kinugawa S, Tsutsui H. Dose-effect on intramuscular metabolic
stress during low-intensity resistance exercise with blood flow restriction.
J Appl Physiol 108: 1563–1567, 2010.
https://journals.physiology.org/doi/full/10.1152/japplphysiol.00504.2009?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
2. Horiuchi M, Okita K, Takada S, Omokawa M, Suga T, Morita N, Hirabayashi K, Yokota T, Kinugawa S, Tsutsui
H. Effects of Oral Single-Dose Administration of Sarpogrelate Hydrochloride
on Saturation O2 of Calf Muscle During Plantar Flexion Exercise. Adv Exp Med Biol 662:531-536, 2010.
https://link.springer.com/chapter/10.1007/978-1-4419-1241-1_77
2009
1. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Takahashi T, Omokawa M, Kinugawa S, Tsutsui H. Intramuscular metabolism
during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 106: 1119-1124, 2009.
https://journals.physiology.org/doi/full/10.1152/japplphysiol.90368.2008?rfr_dat=cr_pub++0pubmed&url_ver=Z39.88-2003&rfr_id=ori%3Arid%3Acrossref.org
2. Kishimoto N, Okita K, Takada S, Sakuma I, Saijo Y, Chiba H, Ishii K, Kishi R, Tsutsui H. Lipoprotein
metabolism, insulin resistance, and adipocytokine levels in Japanese female
adolescents with a normal body mass index and high body fat mass. Circ J 73:534-9, 2009.
https://www.jstage.jst.go.jp/article/circj/73/3/73_CJ-08-0381/_article